Fibonacci numbers which are products of two balancing numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On perfect numbers which are ratios of two Fibonacci numbers ∗

Here, we prove that there is no perfect number of the form Fmn/Fm, where Fk is the kth Fibonacci number.

متن کامل

On Fibonacci numbers which are elliptic Korselt numbers

Here, we show that if E is a CM elliptic curve with CM field Q( √ −d), then the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for Q( √ −d) (defined in the paper) is of asymptotic density zero.

متن کامل

On Fibonacci numbers which are elliptic Carmichael

Here, we show that if E is a CM elliptic curve with CM field different from Q( √ −1), then the set of n for which the nth Fibonacci number Fn is elliptic Carmichael for E is of asymptotic density zero.

متن کامل

On Fibonacci Numbers Which Are Powers: I I

where Fm denotes the 77?th Fibonacci number, and o > 1. Without loss of generality , we may require that t be prime. The unique solution for t 2, namely (m, c) = (12, 12)5 was given by J. H. E. Cohn [2], and by 0. Wyler [11]. The unique solution for £ = 3, namely (m9 o) = (6, 2), was given by H. London and R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6] showed that ...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae et Informaticae

سال: 2019

ISSN: 1787-5021,1787-6117

DOI: 10.33039/ami.2019.06.001